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Abstract— Pre-silicon software development approach requires 
fast simulation of future hardware to run full software stacks far 
ahead of silicon availability. Wind River(R) Simics(R) virtual 
platform framework we use relies on Intel(R) VT-x technology to 
accelerate simulation of Intel targets using Intel host processors. 
In the case of Intel Control-flow Enforcement Technology (CET), 
standard Intel VT-x based direct execution technique turned out 
to be inapplicable due to the nature of the new extension. To 
achieve usable performance, we created a novel solution based on 
microcode patching. This approach provided the performance 
needed to successfully enable pre-silicon work on CET. Simics 
with microcode assists was used to enable CET support in several 
important software stacks, including operating systems, 
compilers and databases. 

Keywords— Intel Control-flow Enforcement Technology, CET, 
Simics, software simulation, pre-silicon prototyping, validation. 

I. INTRODUCTION 
Intel® Control-flow Enforcement Technology (CET) [1] is 

a new instruction set architecture extension intended to 
improve software security by making it harder to use Return-
Oriented Programming (ROP) [2] and Jump-Oriented 
Programming (JOP) [3] – the most prevalent attack 
methodologies for exploit writers targeting vulnerabilities in 
programs. CET is a typical example of a new hardware feature 
that needs software support in order to be meaningful to users. 
To minimize the gap between hardware and software 
availability, software developers must be shifted left in the 
product life-cycle to the pre-silicon phase, meaning that a high 
quality pre-silicon software development environment is 
required. 

Intel published the first version of CET specification in 
2016 [1], and hardware support is not yet available at the time 
of writing. Still, using Wind River® Simics® [4], different 
teams have been working on software support for CET since 
2015. When CET arrives in hardware, major software stacks 
will have support already in place, allowing users to benefit 
from new hardware features immediately on release. 

Simics is a virtual platform framework commonly used for 
pre-silicon software development. Simics provides a software-
based solution that runs on existing Intel platforms while 
providing access to features from future platforms. Simics can 
run real firmware, UEFI, and operating-system code and 
simulate mechanisms involving both instruction-set and 
platform-level changes. 

In order to be useful for software development, the virtual 
platform has to be fast.  In Simics, a preferred way to achieve 
high simulation speed is to use Intel VT-x [5] technology to 
execute instructions directly on the host – known as Simics 
VMP. In the case of CET, some aspects turned out to be 
impossible to accelerate with Simics VMP on existing 
hardware. 

To resolve this, we developed a solution that uses 
microcode patches to existing processors plus minor changes 
in compilation framework to provide an effective and fast 
virtual platform solution that can use Simics VMP. 

II. INTEL CONTROL-FLOW ENFORCEMENT TECHNOLOGY 
Intel Control-flow Enforcement Technology (CET) 

provides the following capabilities to defend against ROP/JOP 
style control-flow subversion attacks: 

 Shadow Stack is intended to defend against ROP. It is a 
second stack that is used exclusively for control transfer 
operations. This stack is separate from the data stack 
and can be enabled for operation in user or supervisor 
mode independently. The pointer to the head of shadow 
stack is held in a new processor register called SSP. 
When shadow stack is enabled, the CALL instruction 
pushes the return address on both the data and shadow 
stack. The RET instruction pops the addresses from 
both stacks and compares them. If they do not match, 
the processor signals a control protection exception. 
Parameters passed to the CALL instruction are stored 
only on the data stack as shown in Fig. 1. 

Argument 2

Return RIPn-1

Return RIPn

Argument 1

Return RIPn-1

Return RIPn

Data stack Shadow stack

RSP SSP  
Fig. 1 Stack usage on near CALL instruction 

 Indirect branch tracking is aimed to defend against 
Jump/Call Oriented Programming. It introduces special 
“ENDBRANCH” instructions to mark valid JMP/CALL 
targets in the program. The instructions reuse subset of 
NOP (no operation) instruction encodings to ensure that 
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programs compiled with ENDBRANCH support will 
continue working on legacy hardware. The CPU 
implements a state machine that tracks JMP and CALL 
instructions so that if there is no matching 
ENDBRANCH instruction at the target address location, 
the processor raises a control protection exception (#CP) 
as show in Fig. 2. 

jmp %rcx
...
endbr64
mov $0, %eax
syscall#C

P 
ex

ce
pt

io
n

 
Fig. 2 ENDBRANCH usage 

Intel CET involves changes to several parts of an Intel 
processor core as follows: 

 Control register and model specific registers extensions 
for configuring shadow stack and indirect branch 
tracking mechanisms. 

 XSAVES and XRSTORS instructions to support 
context-switch of new model specific registers. 

 Memory-management unit (MMU) is extended to 
enforce write protection of the shadow stack such that it 
is writeable only by stores originating from control 
transfer instructions like CALL and interrupt vectoring, 
but not by stores originating from other instructions like 
MOV, XSAVES, etc. Likewise the MMU enforces 
loads from the shadow stack originating from control 
transfer instructions like RET, IRET to only happen 
from pages marked as shadow stack memory pages. 

 Modifications to control transfer flows – CALL, RET, 
interrupt/exception delivery, SYSCALL, SYSRET, 
SYSENTER, SYSEXIT, VM entry, VM exit, SMI, 
RSM, task switch, etc. to support shadow stacks and 
indirect branch tracking. 

 ENDBRANCH new instructions to mark valid 
CALL/JMP targets in a program. 

 New shadow stack management instructions to manage 
shadow stacks e.g. RDSSP instruction to read the SSP 
into a general purpose register, INCSSP to increment 
the shadow stack pointer to perform unwinds, 
SAVEPREVSSP and RSTORSSP instructions to switch 
shadow stacks to support user mode threading, etc.  
RDSSP is encoded using a NOP just like 
ENDBRANCH, while the other instructions use 
currently unused instruction encodings. 

III. SIMULATING CET WITH SIMICS 
To build a virtual platform with CET support, we started 

with a model of 6th generation Intel Core™ processor as a 
basis. The developed model was delivered to a major database 
developer company and to a major operating system provider. 
It was also used by internal Intel teams for enabling of 
different types of software including compilers, C standard 
library, and Linux and Zephyr operating systems. 

 

A. Simics VMP 
Simics has three ways to run target instructions: a plain 

interpreter, a just-in-time (JIT) compiler, and Simics VMP. 
Simics VMP uses Intel VT-x technology to run Intel 64 code 
efficiently on host Intel processors. Since the goal of VMP is 
to accurately simulate a particular instruction set and machine, 
it mixes VT-x execution with the JIT and interpreter in order 
to handle instructions not found on the host but present in the 
target architecture. This implementation relies on getting VM 
exits for unknown instructions. It also limits VMP to updating 
the processor and memory state that the host instructions 
update. 

B. Issues with CET and Simics VMP 
As discussed above, CET introduces new behavior for 

existing instructions as well as several new instructions. These 
changes prevented use of Simics VMP mode and made it 
impossible to run control flow instructions using the Simics 
JIT. As a result the simulation ran quite slowly in interpreter 
mode. 

The shadow stack does not exist on current hardware and 
the instructions that manipulate the stack do not trap in VT-x 
since they are innocuous instructions. The core problem is that 
the behavior of existing instructions is redefined, which is 
fundamentally beyond what can be emulated with Intel VT-x. 

The protection of the shadow stack depends on MMU 
changes that affect all memory accessing instructions. The 
changes cannot be accurately simulated using existing 
hardware MMU implementations. The JIT engine could not 
improve the execution speed of control transfer instructions as 
well because it was developed with assumption that all 
memory accesses generated by a particular instruction have 
the same access rights (which is no longer true for the shadow 
stack accesses). Instruction that doesn’t change control flow 
still can be simulated in JIT mode. 

CET extends behavior of existing control transfer 
instructions: CALL, RET, SYSCALL, SYSRET, SYSENTER, 
SYSEXIT, JMP and IRET. These instructions should make 
additional checks and raise exceptions if operations do not 
meet criteria as defined in the new architecture, not to mention 
that these flows rely on and update shadow stack contents. 
Simics VMP cannot execute that without hardware support. 

Encodings of the new instructions also create issues. The 
ENDBR32 and ENDBR64 instructions are encoded as multi-
byte NOPS, as well as the new RDSSP instruction. Such 
instructions do not trap in VT-x, which means that we cannot 
run such code using virtualization technology. Other new CET 
instructions use previously undefined instruction encodings, 
which means they will raise invalid opcode exception on 
current hardware, cause a VM exits, and allow for emulation 
within the context of VMP. 
C. Making VMP Support CET on Existing Hardware 

In order to provide a fast solution for testing, prototyping, 
and developing software using CET, a better approach was 
needed than the slow interpreter. We needed Simics VMP to 
accelerate most of the execution. To achieve this, a holistic 
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solution involving Simics, hardware microcode, and the 
compilation toolchain was designed. 

A microcode patch was developed to change the behavior 
of near CALL and RET instructions, taking additional actions 
related to CET. CALL now pushes return addresses to two 
stacks and RET reads addresses from both stacks, compares 
them, and results in a VM exit if the addresses do not match. 
The microcode patch was also able to supply the hypervisor 
with additional information to allow it to more efficiently 
process these VM exits. This allowed the most frequent and 
performance sensitive portions of the new CET behavior to be 
implemented on the old hardware as near-native functionality. 

FAR CALL, SYSCALL and other control transfer 
instructions were modified to cause a VM exit, as they are less 
frequent and have more complicated behavior that is best to be 
handled in the regular software simulator versus attempting to 
emulate their changes in the microcode. Note that such VM 
exits are not available in VT-x without this patch. 

The MMU problem was not actually resolved. The 
microcode-based setup does not check against attacks that try 
to modify shadow stack. But the solution is still sufficient to 
develop and test CET-based software stacks against ROP 
attacks. This shows that a virtual platform solution does not 
necessarily have to be complete to be useful. Moreover, 
anyone who is interested in checking robustness against 
attacks on the shadow stack can still use slow but precise 
interpreter. 

To simulate RDSSP a different opcode was used in the 
target code since overriding of a NOP could not be achieved 
through microcode patch. This opcode replacement meant that 
a small change to the compilation toolchain supporting the 
CET was necessary - basically, temporarily emitting place-
holder instructions during enablement work. The Simics 
interpreter mode supports official RDSSP encoding and can 
be used to test final code. 

Together these changes unblock effective simulation (see 
table 1) of CET in Simics that can be used for enablement of 
full software stacks including databases and operating systems. 

TABLE I 
CET SIMULATION SUMMARY IN SIMICS 

Instruction or 
mechanism 

Simulation modes 
(standalone Simics) 

Simulation modes 
(Simics + microcode) 

RDSSP 
instruction Interpreter, JIT 

Interpreter, JIT, 
alternative opcode for 

VMP 
Other shadow 

stack 
instructions 

Interpreter, partially 
JIT 

Interpreter, partially 
JIT, VMP 

Near call/return Interpreter Interpreter, VMP 
Other control 

transfer 
instructions 

Interpreter Interpreter, VMP 

Shadow stack 
protection in 

MMU 
Interpreter, JIT Interpreter, JIT 

Endbranch 
mechanism Interpreter, JIT Interpreter, JIT 

IV.  PERFORMANCE EVALUATION 
The microcode patch developed for this work changes 

performance sensitive instructions – near CALL and near RET. 
These changes themselves slow down the host significantly, 
making interpreter-based CET simulation 7.5 times slower. 
But the patch allows to run simulated code directly on the host 
CPU using Simics VMP technology. 

To estimate speed-up that can be achieved with new CET 
simulation approach a special test was developed. The test 
was designed with an idea that near CALL and RET 
instructions have the most significant performance impact. 
The speed-up achieved with the microcode assisted simulation 
is about 98 times compared to interpreter-based simulation 
running on unmodified host. 

V. CONCLUSIONS 
The Simics CET implementation has been used by different 

teams inside and outside of Intel for enabling, development, 
debugging and testing of different types of software including 
compiler toolchains, databases and operating systems. The 
speed achieved by the microcode patch made Simics fast 
enough to be useful to simulate large software stacks. 

The prototype was helpful in proving CET architectural 
correctness and compatibility with existing software. 
Compatibility was validated by running existing unmodified 
applications (designed without knowledge of CET) on 
simulated systems with CET and the shadow stack enabled, 
and with an operating system and C runtime modified to 
support CET. Correctness was validated by testing software in 
situations where a memory safety bug can lead to control flow 
attacks, with CET catching those situations. 

The technique described in the article extends the standard 
virtual platform approach used for pre-silicon software 
development with some minimal changes to existing hardware, 
in order to efficiently simulate new instruction set architecture 
extensions. In addition, instructions emitted by the 
compilation toolchain for certain operations ware temporarily 
changed so that efficient simulation was achieved. 
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