
Accelerating Simulation of Future Processors with
Compiler and Microcode Assist

Evgeny A. Yulyugin*
*Intel Corporation
Stockholm, Sweden

evgeny.yulyugin@intel.com

Abstract— Pre-silicon software development approach requires
fast simulation of future hardware to run full software stacks far
ahead of silicon availability. Wind River(R) Simics(R) virtual
platform framework we use relies on Intel(R) VT-x technology to
accelerate simulation of Intel targets using Intel host processors.
In the case of Intel Control-flow Enforcement Technology (CET),
standard Intel VT-x based direct execution technique turned out
to be inapplicable due to the nature of the new extension. To
achieve usable performance, we created a novel solution based on
microcode patching. This approach provided the performance
needed to successfully enable pre-silicon work on CET. Simics
with microcode assists was used to enable CET support in several
important software stacks, including operating systems,
compilers and databases.

Keywords— Intel Control-flow Enforcement Technology, CET,
Simics, software simulation, pre-silicon prototyping, validation.

I. INTRODUCTION
Intel® Control-flow Enforcement Technology (CET) [1] is

a new instruction set architecture extension intended to
improve software security by making it harder to use Return-
Oriented Programming (ROP) [2] and Jump-Oriented
Programming (JOP) [3] – the most prevalent attack
methodologies for exploit writers targeting vulnerabilities in
programs. CET is a typical example of a new hardware feature
that needs software support in order to be meaningful to users.
To minimize the gap between hardware and software
availability, software developers must be shifted left in the
product life-cycle to the pre-silicon phase, meaning that a high
quality pre-silicon software development environment is
required.

Intel published the first version of CET specification in
2016 [1], and hardware support is not yet available at the time
of writing. Still, using Wind River® Simics® [4], different
teams have been working on software support for CET since
2015. When CET arrives in hardware, major software stacks
will have support already in place, allowing users to benefit
from new hardware features immediately on release.

Simics is a virtual platform framework commonly used for
pre-silicon software development. Simics provides a software-
based solution that runs on existing Intel platforms while
providing access to features from future platforms. Simics can
run real firmware, UEFI, and operating-system code and
simulate mechanisms involving both instruction-set and
platform-level changes.

In order to be useful for software development, the virtual
platform has to be fast. In Simics, a preferred way to achieve
high simulation speed is to use Intel VT-x [5] technology to
execute instructions directly on the host – known as Simics
VMP. In the case of CET, some aspects turned out to be
impossible to accelerate with Simics VMP on existing
hardware.

To resolve this, we developed a solution that uses
microcode patches to existing processors plus minor changes
in compilation framework to provide an effective and fast
virtual platform solution that can use Simics VMP.

II. INTEL CONTROL-FLOW ENFORCEMENT TECHNOLOGY
Intel Control-flow Enforcement Technology (CET)

provides the following capabilities to defend against ROP/JOP
style control-flow subversion attacks:

 Shadow Stack is intended to defend against ROP. It is a
second stack that is used exclusively for control transfer
operations. This stack is separate from the data stack
and can be enabled for operation in user or supervisor
mode independently. The pointer to the head of shadow
stack is held in a new processor register called SSP.
When shadow stack is enabled, the CALL instruction
pushes the return address on both the data and shadow
stack. The RET instruction pops the addresses from
both stacks and compares them. If they do not match,
the processor signals a control protection exception.
Parameters passed to the CALL instruction are stored
only on the data stack as shown in Fig. 1.

Argument 2

Return RIPn-1

Return RIPn

Argument 1

Return RIPn-1

Return RIPn

Data stack Shadow stack

RSP SSP
Fig. 1 Stack usage on near CALL instruction

 Indirect branch tracking is aimed to defend against
Jump/Call Oriented Programming. It introduces special
“ENDBRANCH” instructions to mark valid JMP/CALL
targets in the program. The instructions reuse subset of
NOP (no operation) instruction encodings to ensure that

2017 Fourth International Conference on Engineering and Telecommunication

978-1-5386-4547-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EnT.2017.30

111

2017 Fourth International Conference on Engineering and Telecommunication

978-1-5386-4547-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EnT.2017.30

111

2017 Fourth International Conference on Engineering and Telecommunication

978-1-5386-4547-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EnT.2017.30

111

2017 IVth International Conference on Engineering and Telecommunication (EnT)

978-1-5386-4547-5/17 $31.00 © 2017 IEEE

DOI 10.1109/ICEnT.2017.30

111

programs compiled with ENDBRANCH support will
continue working on legacy hardware. The CPU
implements a state machine that tracks JMP and CALL
instructions so that if there is no matching
ENDBRANCH instruction at the target address location,
the processor raises a control protection exception (#CP)
as show in Fig. 2.

jmp %rcx
...
endbr64
mov $0, %eax
syscall#C

P
ex

ce
pt

io
n

Fig. 2 ENDBRANCH usage

Intel CET involves changes to several parts of an Intel
processor core as follows:

 Control register and model specific registers extensions
for configuring shadow stack and indirect branch
tracking mechanisms.

 XSAVES and XRSTORS instructions to support
context-switch of new model specific registers.

 Memory-management unit (MMU) is extended to
enforce write protection of the shadow stack such that it
is writeable only by stores originating from control
transfer instructions like CALL and interrupt vectoring,
but not by stores originating from other instructions like
MOV, XSAVES, etc. Likewise the MMU enforces
loads from the shadow stack originating from control
transfer instructions like RET, IRET to only happen
from pages marked as shadow stack memory pages.

 Modifications to control transfer flows – CALL, RET,
interrupt/exception delivery, SYSCALL, SYSRET,
SYSENTER, SYSEXIT, VM entry, VM exit, SMI,
RSM, task switch, etc. to support shadow stacks and
indirect branch tracking.

 ENDBRANCH new instructions to mark valid
CALL/JMP targets in a program.

 New shadow stack management instructions to manage
shadow stacks e.g. RDSSP instruction to read the SSP
into a general purpose register, INCSSP to increment
the shadow stack pointer to perform unwinds,
SAVEPREVSSP and RSTORSSP instructions to switch
shadow stacks to support user mode threading, etc.
RDSSP is encoded using a NOP just like
ENDBRANCH, while the other instructions use
currently unused instruction encodings.

III. SIMULATING CET WITH SIMICS
To build a virtual platform with CET support, we started

with a model of 6th generation Intel Core™ processor as a
basis. The developed model was delivered to a major database
developer company and to a major operating system provider.
It was also used by internal Intel teams for enabling of
different types of software including compilers, C standard
library, and Linux and Zephyr operating systems.

A. Simics VMP
Simics has three ways to run target instructions: a plain

interpreter, a just-in-time (JIT) compiler, and Simics VMP.
Simics VMP uses Intel VT-x technology to run Intel 64 code
efficiently on host Intel processors. Since the goal of VMP is
to accurately simulate a particular instruction set and machine,
it mixes VT-x execution with the JIT and interpreter in order
to handle instructions not found on the host but present in the
target architecture. This implementation relies on getting VM
exits for unknown instructions. It also limits VMP to updating
the processor and memory state that the host instructions
update.

B. Issues with CET and Simics VMP
As discussed above, CET introduces new behavior for

existing instructions as well as several new instructions. These
changes prevented use of Simics VMP mode and made it
impossible to run control flow instructions using the Simics
JIT. As a result the simulation ran quite slowly in interpreter
mode.

The shadow stack does not exist on current hardware and
the instructions that manipulate the stack do not trap in VT-x
since they are innocuous instructions. The core problem is that
the behavior of existing instructions is redefined, which is
fundamentally beyond what can be emulated with Intel VT-x.

The protection of the shadow stack depends on MMU
changes that affect all memory accessing instructions. The
changes cannot be accurately simulated using existing
hardware MMU implementations. The JIT engine could not
improve the execution speed of control transfer instructions as
well because it was developed with assumption that all
memory accesses generated by a particular instruction have
the same access rights (which is no longer true for the shadow
stack accesses). Instruction that doesn’t change control flow
still can be simulated in JIT mode.

CET extends behavior of existing control transfer
instructions: CALL, RET, SYSCALL, SYSRET, SYSENTER,
SYSEXIT, JMP and IRET. These instructions should make
additional checks and raise exceptions if operations do not
meet criteria as defined in the new architecture, not to mention
that these flows rely on and update shadow stack contents.
Simics VMP cannot execute that without hardware support.

Encodings of the new instructions also create issues. The
ENDBR32 and ENDBR64 instructions are encoded as multi-
byte NOPS, as well as the new RDSSP instruction. Such
instructions do not trap in VT-x, which means that we cannot
run such code using virtualization technology. Other new CET
instructions use previously undefined instruction encodings,
which means they will raise invalid opcode exception on
current hardware, cause a VM exits, and allow for emulation
within the context of VMP.
C. Making VMP Support CET on Existing Hardware

In order to provide a fast solution for testing, prototyping,
and developing software using CET, a better approach was
needed than the slow interpreter. We needed Simics VMP to
accelerate most of the execution. To achieve this, a holistic

112112112112

solution involving Simics, hardware microcode, and the
compilation toolchain was designed.

A microcode patch was developed to change the behavior
of near CALL and RET instructions, taking additional actions
related to CET. CALL now pushes return addresses to two
stacks and RET reads addresses from both stacks, compares
them, and results in a VM exit if the addresses do not match.
The microcode patch was also able to supply the hypervisor
with additional information to allow it to more efficiently
process these VM exits. This allowed the most frequent and
performance sensitive portions of the new CET behavior to be
implemented on the old hardware as near-native functionality.

FAR CALL, SYSCALL and other control transfer
instructions were modified to cause a VM exit, as they are less
frequent and have more complicated behavior that is best to be
handled in the regular software simulator versus attempting to
emulate their changes in the microcode. Note that such VM
exits are not available in VT-x without this patch.

The MMU problem was not actually resolved. The
microcode-based setup does not check against attacks that try
to modify shadow stack. But the solution is still sufficient to
develop and test CET-based software stacks against ROP
attacks. This shows that a virtual platform solution does not
necessarily have to be complete to be useful. Moreover,
anyone who is interested in checking robustness against
attacks on the shadow stack can still use slow but precise
interpreter.

To simulate RDSSP a different opcode was used in the
target code since overriding of a NOP could not be achieved
through microcode patch. This opcode replacement meant that
a small change to the compilation toolchain supporting the
CET was necessary - basically, temporarily emitting place-
holder instructions during enablement work. The Simics
interpreter mode supports official RDSSP encoding and can
be used to test final code.

Together these changes unblock effective simulation (see
table 1) of CET in Simics that can be used for enablement of
full software stacks including databases and operating systems.

TABLE I
CET SIMULATION SUMMARY IN SIMICS

Instruction or
mechanism

Simulation modes
(standalone Simics)

Simulation modes
(Simics + microcode)

RDSSP
instruction Interpreter, JIT

Interpreter, JIT,
alternative opcode for

VMP
Other shadow

stack
instructions

Interpreter, partially
JIT

Interpreter, partially
JIT, VMP

Near call/return Interpreter Interpreter, VMP
Other control

transfer
instructions

Interpreter Interpreter, VMP

Shadow stack
protection in

MMU
Interpreter, JIT Interpreter, JIT

Endbranch
mechanism Interpreter, JIT Interpreter, JIT

IV. PERFORMANCE EVALUATION
The microcode patch developed for this work changes

performance sensitive instructions – near CALL and near RET.
These changes themselves slow down the host significantly,
making interpreter-based CET simulation 7.5 times slower.
But the patch allows to run simulated code directly on the host
CPU using Simics VMP technology.

To estimate speed-up that can be achieved with new CET
simulation approach a special test was developed. The test
was designed with an idea that near CALL and RET
instructions have the most significant performance impact.
The speed-up achieved with the microcode assisted simulation
is about 98 times compared to interpreter-based simulation
running on unmodified host.

V. CONCLUSIONS
The Simics CET implementation has been used by different

teams inside and outside of Intel for enabling, development,
debugging and testing of different types of software including
compiler toolchains, databases and operating systems. The
speed achieved by the microcode patch made Simics fast
enough to be useful to simulate large software stacks.

The prototype was helpful in proving CET architectural
correctness and compatibility with existing software.
Compatibility was validated by running existing unmodified
applications (designed without knowledge of CET) on
simulated systems with CET and the shadow stack enabled,
and with an operating system and C runtime modified to
support CET. Correctness was validated by testing software in
situations where a memory safety bug can lead to control flow
attacks, with CET catching those situations.

The technique described in the article extends the standard
virtual platform approach used for pre-silicon software
development with some minimal changes to existing hardware,
in order to efficiently simulate new instruction set architecture
extensions. In addition, instructions emitted by the
compilation toolchain for certain operations ware temporarily
changed so that efficient simulation was achieved.

ACKNOWLEDGMENT
Author would like to thank Barry Huntley and Vedvyas

Shanbhogue for the assistance with microcode; Jakob
Engblom, Magnus Christensson and Grigory Rechistov for the
useful comments on drafts of this article.

REFERENCES
[1] Control-flow Enforcement Technology Preview, Intel Corporation,

2016.
[2] M. Prandini and M. Ramilli, "Return-Oriented Programming," in IEEE

Security & Privacy, vol. 10, no. 6, pp. 84-87, Nov.-Dec. 2012.
[3] F. Yao, J. Chen and G. Venkataramani, "JOP-alarm: Detecting jump-

oriented programming-based anomalies in applications," 2013 IEEE
31st International Conference on Computer Design (ICCD), Asheville,
NC, 2013, pp. 467-470.

[4] D. Aarno and J. Engblom, Software and System Development using
Virtual Platforms – Full System Simulation with Wind River Simics,
Morgan Kaufmann Publishers, 2014.

[5] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, 2017.

113113113113

